As-Built Baseline Monitoring Report

FINAL

MATTHEW SITE

NCDMS Project #100043 (Contract #7419) USACE Action ID: SAW-2017-00055 DWR Project #2017-0624

> Johnston County, North Carolina Neuse River Basin HUC 03020201

Provided by:

Resource Environmental Solutions, LLC for Environmental Banc & Exchange, LLC

Provided for:

NC Department of Environmental Quality Division of Mitigation Services

June 2021

Corporate Headquarters 6575 W Loop S #300 Bellaire, TX 77401

Main: 713.520.5400

June 29, 2021

Lindsay Crocker NC DEQ Division of Mitigation Services 217 West Jones Street Raleigh, NC 27603

RE: Matthew Mitigation Site: Baseline Report and As-Built Drawings (NCDMS Project ID #100043)

Listed below are comments provided by DMS on June 16, 2021 regarding the Matthew Mitigation Site: Baseline Report and As-Built Drawings and RES' responses.

1. The SAW number shown on DMS records for this project is SAW-2017-00055. Please check and correct this number on your cover page if necessary.

This has been corrected on the cover page.

2. Page 3. There is a sentence regarding reduced hydroperiod for MY1 and 2, which was removed during IRT review comment. Please remove this sentence from MY0 as this is not approved by IRT.

This sentence has been removed from Page 3.

3. Table 1 Asset table: There were slight changes in WA, WD, WE, and WF from mitigation plan which were discussed in the field as survey changes. Review those areas to ensure these are not typos.

These minor changes are correct.

4. Provide day and month when construction and planting was completed in report and timeline table (Table 2).

Done.

5. Describe range of fill removal that occurred for wetland WF.

The fill/spoil removal in the wetlands below the old dam were unnatural piles of fill/spoil that were placed in the wetland area during dam construction, stream channelization, and/or dam breach. The piles covered existing hydric soils that were present in the wetland at the ground surface. The fill/spoil removal was up to 3 feet within these wetlands and the dam removal was up to 10 feet of cut. The fill/spoil was removed so that the ground elevation was returned to its elevation prior to the dam breach. The removed material was placed within the large spoil area located just southwest of the old dam (shown on construction plans) and just outside of the wetland area. Additionally, the fill/spoil removal areas have been added to the CCPV.

6. The text describes 2 additional species and some species removed due to availability. Please confirm that species added to the project match target community in Mitigation Plan.

The two additional species (green ash and water oak) are both mentioned in target community in the 2012 Guide to the Natural Communities of North Carolina.

- 7. The Mitigation Plan shows fencing along the western border and it was observed during site visit. Please update CCPV to show fence and describe it as installed in baseline report.

 Done.
- 8. Add CCPV to report. This was sent via email to use as a georeferenced PDF. Done.
- 9. Add structures and stationing to CCPV (if possible). Structures have been added to the CCPV.
- 10. It is difficult to discern between the groundwater and flow gages on the CCPV. Suggest using colors that are easier to tell apart.

The stage recorder is now shown in light blue instead of teal.

- 11. There was no rain gage installed or described in Mitigation Plan. DMS recommends installing one for discussion purposes with wetlands.

 Noted.
- 12. Provide elevation of wetland gages in a table format or on drawings if possible/available. See the wetland gauge elevations below. They will also be included in the Year 1 report in the wetland hydrology summary table.

Groundwater	Wetland	
Well	ID	Elevation
GW1	WA	126.92
GW2	WA	127.43
GW3	WA	126.70
GW4	WA	126.31
GW5	WA	124.98
GW6	WA	123.89
GW7	WF	123.88
GW8	WF	123.58

- 13. Include any pictures and/or drone videos to assist IRT in visualizing.

 Drone pictures/videos were not taken post construction. Additional general site photos were added to Appendix B.
- 14. Please review the cross section data and ensure that all points outside of the main channel with elevations less than the Low Bank Height are excluded from the cross section area calculation (e.g. XS 6).

XS 6 has been corrected and all cross section data has been reviewed and no other errors were found.

15. Please include the CCPV that is indicated as Figure 2 in the table of contents and text. Done.

Table of Contents

1.0 Project Summary	1
1.1 Project Location and Description	
1.2 Project Goals and Objectives	1
1.3 Project Success Criteria	
Stream Restoration Success Criteria	2
Wetland Hydrology Success Criteria	2
Vegetation Success Criteria	
1.4 Project Components	3
1.5 Design and Approach	
Streams	
Wetlands	4
1.6 Construction and As-Built Conditions	5
1.7 Baseline Monitoring Performance (MY0)	5
Vegetation	
Stream Geomorphology	
Stream Hydrology	
Wetland Hydrology	6
2.0 Methods	
3.0 References	

Appendix A: Background Tables

Table 1. Project Mitigation Components

Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table

Table 4. Project Background Information Table

Figure 1. Site Location Map

Appendix B: Visual Assessment Data

Figure 2. Current Conditions Plan View

Table 5. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Vegetation Plot Photos

Monitoring Device Photos

General Site Photos

Appendix C: Vegetation Plot Data Table 7. Planted Species Summary

Table 8. Vegetation Plot Mitigation Success Summary

Table 9. Stem Count Total and Planted by Plot Species

Appendix D: Stream Measurement and Geomorphology Data

Table 10. Baseline Stream Data Summary

Table 11. Cross Section Morphology Data Table

Cross Section Overlay Plots

Appendix E: Record Drawings

1.0 Project Summary

1.1 Project Location and Description

The Matthew Site ("Project") is located within a rural watershed in Johnston County, North Carolina approximately two miles south of Four Oaks. The Project lies within the Neuse River Basin, North Carolina United States Geological Survey (USGS) 8-digit Cataloguing Unit 03020201 and 14-digit hydrologic unit code (HUC) 03020201150020, a Targeted Local Watershed (TLW) and the Division of Water Resources (NCDWR) sub-basin 03-04-04 (Figure 1). The Project restores 3,230 linear feet (LF) and preserves 234 LF of streams as well as restores 12.102 acres and preserves 2.063 acres of wetland that provide water quality benefit for 1,460 acres of drainage area.

The Project area is comprised of a 19.19-acre easement involving two unnamed tributaries within the footprint of a breached pond that drain directly to Juniper Swamp, which eventually drains to Hannah Creek. The Project area also included riparian wetlands that were impounded and filled. The stream and wetland mitigation components are summarized in Table 1. The Project is accessible from state route NC-96. Coordinates for the Project areas are approximately 35.42503, -78.40849 at the NC Department of Transportation (DOT) culvert located just above the Project easement.

1.2 Project Goals and Objectives

Through the comprehensive analysis of the Project's maximum functional uplift using the Stream Functions Pyramid Framework and conclusions based on a Site Hydric Soils Detailed Study, specific, attainable goals and objectives were realized by the Project. These goals clearly address the degraded water quality and nutrient input from agricultural practices that were identified as major watershed stressors in the 2010 Neuse RBRP (amended August 2018). The Project addresses outlined RBRP Goal 2 list in the Mitigation Plan.

The Project goals are:

- Re-establish hydrology to a historical stream/wetland complex that has been impacted by agricultural impoundments for over 113 years.
- To transport water in a stable, non-erosive manner and maintain a stable water table in riparian floodplain wetlands that will also contribute to stream baseflow;
- Improve flood flow attenuation on site and downstream by allowing for overbank flows and connection to the floodplain;
- Create diverse bedforms and stable channels that achieve healthy dynamic equilibrium and provide suitable habitat for life
- Improve in-stream habitat;
- Limit sediment and nutrient inputs into the stream system;
- Re-establish, rehabilitate, and preserve wetlands;
- Restore, enhance, and preserve native wetland and riparian vegetation;
- Indirectly support the goals of the 2010 Neuse RBRP (amended August 2018) to improve water quality and to reduce sediment and nutrient loads; and
- To support the life histories of aquatic and riparian plants and animals through stream restoration activities

The Project objectives to address the goals are:

• Designed and reconstructed stream channels sized to convey bankfull flows that maintain a stable dimension, profile, and planform;

- Added in-stream structures and bank stabilization measures to improve bedform diversity and protect restored streams;
- Installed habitat features such as brush toes, constructed riffles, woody materials, and pools of varying depths to restored streams;
- Removed dams, berms, fill material, spoil piles, and debris to restore wetland hydrology and maintain appropriate hydroperiod for Bibb soil series;
- Increased forested riparian buffers to at least 50 feet on both sides of the channel along the Project reaches with a hardwood riparian plant community;
- Installed approximately 937 linear feet of livestock exclusion fencing along the western easement boundary to ensure livestock will not have stream or wetland access;
- Treated exotic invasive species; and
- Established a permanent conservation easement on the Project that perpetually protects streams, wetlands, and their associated buffers.

1.3 Project Success Criteria

The success criteria for the Project follows the 2016 USACE Wilmington District Stream and Wetland Compensatory Mitigation Update, the Matthew Site Final Mitigation Plan, and subsequent agency guidance. Cross section and vegetation plot monitoring takes place in Years 0, 1, 2, 3, 5, and 7. Hydrology and visual monitoring takes place annually. Specific success criteria components are presented below.

Stream Restoration Success Criteria

Four bankfull flow events must be documented within the seven-year monitoring period. The bankfull events must occur in separate years. Otherwise, the stream monitoring will continue until four bankfull events have been documented in separate years. Stage recorders were installed on RL1-A and RL2 to document bankfull events.

There should be little change in as-built cross sections. If changes do take place, they should be evaluated to determine if they represent a movement toward a less stable condition (for example down-cutting or erosion) or are minor changes that represent an increase in stability (for example settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross sections shall be classified using the Rosgen stream classification method, and all monitored cross sections should fall within the quantitative parameters defined for channels of the design stream type. Bank height ratio shall not exceed 1.2, and the entrenchment ratio shall be above 2.2 within restored riffle cross sections (for C and E streams).

Digital images are used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures. Longitudinal images should not indicate the absence of developing bars within the channel or an excessive increase in channel depth. Lateral images should not indicate excessive erosion or continuing degradation of the banks over time. A series of images over time should indicate successional maturation of riparian vegetation.

Wetland Hydrology Success Criteria

The Natural Resources Conservation Service (NRCS) has a current WETs table (1989-2018) for Johnston County upon which to base a normal rainfall amount and average growing season. The closest comparable data station was determined to be the WETS station for Smithfield, NC. The growing season for Johnston County is 242 days long, extending from March 18 to November 15, and is based on a daily minimum temperature greater than 28 degrees Fahrenheit occurring in five of ten years.

Based upon field observation across the site, the NRCS mapping units show a good correlation to actual site conditions in areas of the site. Mitigation guidance for soils in the Coastal Plain suggests a hydroperiod for the Bibb soil of 12-16 percent of the growing season. The hydrology success criterion for the Site is to restore the water table so that it remains continuously within 12 inches of the soil surface for at least 12 percent of the growing season (approximately 29 days) at each groundwater gauge location.

Vegetation Success Criteria

Specific and measurable success criteria for plant density within the riparian buffers on the Project follow IRT Guidance. The interim measures of vegetative success for the Project is the survival of at least 320 planted three-year old trees per acre at the end of Year 3, 260 trees per acre with an average height of seven feet at the end of Year 5, and the final vegetative success criteria is 210 trees per acre with an average height of 10 feet at the end of Year 7. Volunteer trees that are listed on the approved planting list will be counted, identified to species, and included in the yearly monitoring reports, and may be counted towards the success criteria of total planted stems after presence in the plot for two or more growing seasons. Moreover, any single species can only account for up to 50 percent of the required number of stems within any vegetation plot. Any stems in excess of 50 percent will be shown in the monitoring table but will not be used to demonstrate success.

1.4 Project Components

Prior to restoration, the project streams and wetlands were significantly impacted by a large impoundment constructed over a hundred years ago. Improvements to the Project help meet the river basin needs expressed in the 2010 Neuse River Basin Restoration Priorities (RBRP).

Through stream and wetland restoration and preservation, the Project presents 3,253.400 Warm Stream Mitigation Units (SMU) and 7.207 Wetland Mitigation Units (WMU).

Matthew Project Components Summary (Mitigation Plan)

Stream Mitigation								
Mitigation Approach	Linear Feet	Ratio	Warm SMU					
Restoration	3,230	1:1	3,230.000					
Preservation	234	10:1	23.400					
Preservation (No Credit)	108	N/A	0.000					
Total	3,572		3,253.400					
	Wetland Mitigation							
Mitigation Approach	Area (acres)	Ratio	WMU					
Rehabilitation (Pond Conversion)	10.202	2:1	5.101					
Re-establishment (Fill Removal)	1.900	1:1	1.900					
Preservation	2.063	10:1	0.206					
Total	14.165		7.207					

1.5 Design and Approach

Streams

The Project includes Restoration and Preservation. Stream restoration incorporates the design of a single-thread meandering channel, with parameters based on data taken from reference site, published empirical

relationships, regional curves developed from existing project streams, and NC Regional Curves. Analytical design techniques were also a crucial element of the project and were used to determine the design discharge and to verify the design as a whole.

The Project has been broken into the following design reaches:

Reach RL1-A – Priority I Restoration was performed along this reach for 2,438 linear feet both upstream and downstream of the dam. The upstream end is fed from three perched 54-inch crossline culverts under NC HWY 96, and construction activities included installing a plunge pool to stabilize the existing outfall. The conservation easement begins approximately 125 feet downstream of the culverts. This allows for DOT and public utilities to maintain the crossing and a buried water line, respectively. Additionally, the easement is setback from the road such that the adjacent landowner to the north may access and maintain the existing barn located approximately 25 to 40 feet from the channel.

Restoration activities included constructing a channel sized to provide frequent out of bank flows to allow improved floodplain and wetland connectivity. In-stream structures such as log vanes, log sills, brush toes and constructed riffles were installed for vertical and lateral stability and to improve bedform diversity. Additional work included removing the dam, existing pipes, a bridge, and riprap piles.

The restoration activities on the lower extent of Reach RL1-A impacted existing wetlands WE and WD before transitioning to reach RL1-B as preservation. However, the stream restoration results in net positive wetland area as surrounding riparian areas were restored as wetlands by raising the channel bed elevation, thus raising groundwater elevation, and allowing for more frequent overbank events. Also, the surrounding wetland re-establishment involved with this Project, including removal of the upstream dam, spoil piles, and debris, as well as replanting a bottomland hardwood community, further improves existing wetlands.

Reach RL1-B – Preservation was performed for this reach downstream of RL1-A. This section begins where the channel has stabilized from the hurricane breach and continues flowing to the southwest beyond the Project. Preservation activities consisted of supplemental planting throughout the riparian buffer.

Reach RL2 – Priority I Restoration was performed for this reach. Flowing out of a pond just north of the Project, the channel was constructed beginning at the existing pond outfall (24" CMP) and confluences with RL1-A near stationing 16+50. Restoration activities involved constructing a meandering channel sized to improve floodplain connectivity. In-stream structures such as log vanes, log sills, brush toes and constructed riffles were installed for stability and to improve bedform diversity.

Wetlands

The Matthew Project offers a total ecosystem restoration opportunity. As such, the wetland restoration is closely tied to the stream restoration and pond dam removal. The Project provides 7.207 WMUs through a combination of wetland re-establishment, rehabilitation, and preservation.

Wetland rehabilitation via "pond conversion" was performed within the pond footprint, including wetland, WA, with a credit ratio of 2:1. The construction of the farm pond had altered surface drainage and even since the breach, was partially impounded and flow is constricted. The primary restoration activity was the removal of the pond dam and its associated large berm along the eastern edge. Additionally, stream restoration within this pond footprint re-established stable stream channels that maintain a constant surface-

groundwater connection that provides retention and storage within the floodplain, and thus healthy wetland hydroperiods.

Wetland re-establishment via "fill removal," with a credit ratio of 1:1, was performed in the area below the dam that consists of hydric soils surrounding Wetlands WC, WD, and WE that lacked sufficient wetland hydrology. This re-established wetland area is referred to as "WF" (Wetland F). This area lacked hydrology due to the construction of the farm pond that had altered surface drainage and had created constricted flow, inhibiting normal flow volumes parallel to the stream both at the surface and within the subsurface. In addition, fill material from the construction of the pond had filled these pre-existing wetlands and buried hydric soils. Furthermore, a ditch from the old pond outlet along the western edge of the floodplain drained upland overland flow and seepage away from the natural floodplain. This wetland area was re-established by removing the dam, removing fill material below the dam, and aligning a stable stream channel via stream restoration efforts. Additional activities included the removal of dam material debris that was littered throughout the floodplain during the breach of Hurricane Matthew, followed by surface roughening and creation of shallow depressions throughout the area in order to mimic natural conditions and provide an appropriate landscape for diverse habitat.

Preservation with a 10:1 credit ratio was used for jurisdictional wetlands WB, WC, WD, and WE. Some of these areas that were impacted by stream restoration efforts were planted with supplemental, native hardwood trees.

The wetland restoration areas directly connect to the existing high-quality bottomland hardwood wetland preservation area. The resulting wetland functions as a large, contiguous bottomland hardwood wetland community.

1.6 Construction and As-Built Conditions

Site construction was completed on January 4, 2021 and planting was completed on March 2, 2021. The Matthew Site was overall built to design plans and guidelines. Fencing was installed as proposed along the western edge of the easement. A rock swale was added to the left bank of the downstream end of RL1 to address runoff from the wetland and old channel area. The as-built wetlands were 0.03 acres smaller than design due to minor survey differences of the top of bank during as-built. The record drawings are included in **Appendix E**.

Planting plan changes included replacing swamp tupelo (*Nyssa biflora*), Atlantic white cedar (*Chamaecyparis thyoides*), overcup oak (*Quercus lyrata*), and water tupelo (*Nyssa aquatica*) with water oak (*Quercus nigra*) and green ash (*Fraxinus pennsylvanica*). Planting plan changes were based on bare root availability. Minor monitoring device location changes were made during as-built installation, however, the quantities remained as proposed in the Mitigation Plan.

1.7 Baseline Monitoring Performance (MY0)

The Matthew Baseline Monitoring activities were performed in February and March 2021. All Baseline Monitoring data is present below and in the appendices. The Site is on track to meeting vegetation, wetland, and stream interim success criteria.

Vegetation

Setup and monitoring of the ten permanent vegetation plots and one random vegetation plot was completed after planting and stream construction on March 4, 2021. Vegetation data are in **Appendix C**, associated

photos are in **Appendix B**, and plot locations are in **Appendix B**. MY0 monitoring data indicates that all plots are exceeding the interim success criteria of 320 planted stems per acre. Planted stem densities ranged from 809 to 1,416 planted stems per acre with a mean of 1,096 planted stems per acre across all plots. A total of eight species were documented within the plots. Volunteer species were not noted at baseline monitoring but are expected to establish in upcoming years. The average stem height in the vegetation plots was 1.5 feet.

Visual assessment of vegetation outside of the monitoring plots indicates that the herbaceous vegetation is becoming well established throughout the project.

Stream Geomorphology

Cross section setup and geomorphology data collection for MY0 was collected on February 10, 2021. Summary tables and cross section plots are in **Appendix D**. Overall the baseline cross sections and profile relatively match the proposed design. The as-built conditions show that shear stress and velocities have been reduced for all restoration/enhancement reaches. All reaches were designed as gravel bed channels and remain classified as gravel bed channels post-construction.

Visual assessment of the stream channel was performed to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. The channel is transporting sediment as designed and will continue to be monitored for aggradation and degradation.

Stream Hydrology

Two stage recorders were installed on February 10, 2021: one on RL1-A and one on RL2. The stage recorders are in place to document bankfull events. Stream hydrology data will be included in the Monitoring Year 1 Report in this section and in the appendices. Gauge locations can be found on Figure 2 and photos are in **Appendix B**.

Wetland Hydrology

A total of 10 groundwater wells with automatic recording pressure transducers were installed throughout the wetland areas on February 9, 2021. Two wells were installed in preservation areas to act as reference wells. These will record water table depths at a frequency of twice per day. Wetland hydrology data will be included in the Monitoring Year 1 Report in this section and in the appendices.

2.0 Methods

Stream monitoring was conducted using a Topcon GTS-312 Total Station. Three-dimensional coordinates associated with cross-section data were collected in the field (NAD83 State Plane feet FIPS 3200). Morphological data were collected at 16 cross-sections. Survey data were imported into CAD, ArcGIS®, and Microsoft Excel® for data processing and analysis. The stage recorders include an automatic pressure transducer placed in PVC casing in a pool. The elevation of the bed and top of bank at each stage recorder are used to detect bankfull events.

Vegetation success is being monitored at 10 permanent vegetation plots and four random vegetation plots. Vegetation plot monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted species. Data are processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with PVC at the origin and metal conduit at the other corners. Photos of each plot are to be taken from the

origin each monitoring year. The random plots are to be collected in locations where there are no permanent vegetation plots. Random plots will most likely be collected in the form of 100 square meter belt transects with variable dimensions. Tree species and height will be recorded for each planted stem and the transects will be mapped and new locations will be monitored in subsequent years.

Wetland hydrology is monitored to document success in wetland restoration areas where hydrology was affected. This is accomplished with eight automatic pressure transducer gauges (located in groundwater wells) that record daily groundwater levels. Eight have been installed within the wetland restoration crediting area and two within preservation areas to serve as reference wetlands. One automatic pressure transducer is installed above ground for use as a barometric reference. Gauges are downloaded quarterly and wetland hydroperiods are calculated during the growing season. Gauge installation followed current regulatory guidance. Visual observations of primary and secondary wetland hydrology indicators are also recorded during quarterly site visits.

3.0 References

- Griffith, G.E., J.M.Omernik, J.A. Comstock, M.P. Schafale, W.H.McNab, D.R.Lenat, T.F.MacPherson, J.B. Glover, and V.B. Shelburne. (2002). Ecoregions of North Carolina and South Carolina, (color Poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,500,000).
- Lee Michael T., Peet Robert K., Roberts Steven D., and Wentworth Thomas R., 2008. CVS-EEP Protocol for Recording Vegetation Level. Version 4.2
- Peet, R.K., Wentworth, T.S., and White, P.S. (1998), *A flexible, multipurpose method for recording vegetation composition and structure*. Castanea 63:262-274
- Resource Environmental Solutions (2019). Matthew Site Final Mitigation Plan.
- Schafale, M.P. 2012. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDENR, Raleigh, NC.
- USACE. (2016). Wilmington District Stream and Wetland Compensatory Mitigation Update. NC: Interagency Review Team (IRT).

Appendix A

Background Tables

Table 1. Matthew (100043) - Mitigation Assets and Components

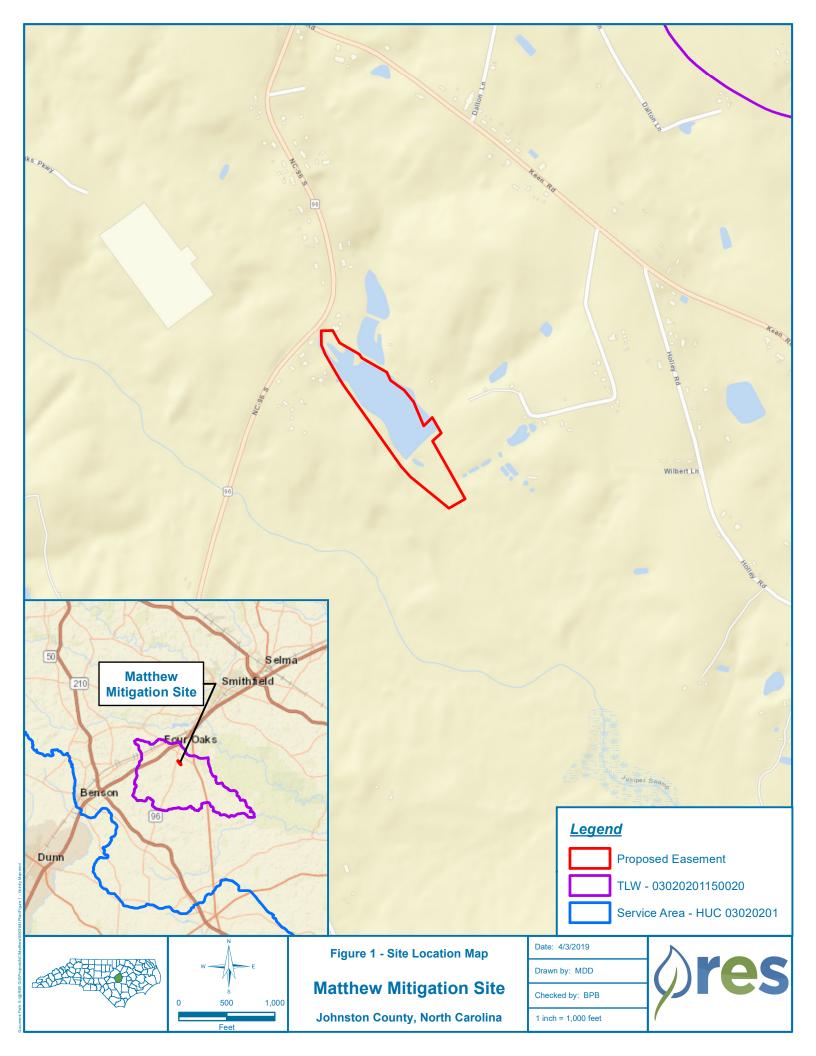
	Existing	Mitigation							
	Footage	Plan					Mitigation	As-Built	
	or	Footage or	Mitigation	Restoration	Priority	Mitigation	Plan	Footage or	
Project Segment	Acreage	Acreage	Category	Level	Level	Ratio (X:1)	Credits	Acreage	Comments
RL1-A	1767	2438	Warm	R	1	1.00000	2438.000	2438	Channel restoration, riparian planting, livestock exclusion
RL1-B	234	234	Warm	Р	NA	10.00000	23.400	234	Supplemental planting, livestock exclusion
RL1-B	108	108	Warm	Р	NA	NA	0.000	108	Channel within easement; however, no credit
RL2	949	792	Warm	R	1	1.00000	792.000	792	Channel restoration, riparian planting, livestock exclusion
WA	10.199	10.202	RR	RH		2.00000	5.101	10.204	Dam and berm removal, stream restoration, native planting
WB	0.429	0.429	RR	Р		10.00000	0.043	0.429	Permanent conservation easement
WC	0.102	0.102	RR	Р		10.00000	0.010	0.102	Permanent conservation easement
WD	0.808	0.807	RR	Р		10.00000	0.081	0.786	Permanent conservation easement
WE	0.758	0.725	RR	Р		10.00000	0.073	0.705	Permanent conservation easement
WF	0.000	1.900	RR	RE		1.00000	1.900	1.903	Dam, fill, spoil, and debris removal; stream restoration, native planting

Project Credits

		Stream		Riparian	Non-Rip	Coastal
Restoration Level	Warm	Cool	Cold	Wetland	Wetland	Marsh
Restoration	3230.000			7.001		
Re-establishment						
Rehabilitation						
Enhancement						
Enhancement I						
Enhancement II						
Creation						
Preservation	23.400			0.206		
Total	3253.400			7.207		

Table 2. Project Activity and Reporting History Matthew Mitigation Site

Elapsed Time Since grading complete: 5 months Elapsed Time Since planting complete: 3 months


Number of reporting Years¹: 0

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	NA	Sep-19
Final Design – Construction Plans	NA	Aug-20
Stream Construction	NA	04-Jan-21
Site Planting	NA	02-Mar-21
As-built (Year 0 Monitoring – baseline)	Mar-21	Jun-21
Year 1 Monitoring		
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 6 Monitoring		
Year 7 Monitoring		

^{1 =} The number of reports or data points produced excluding the baseline

٦	Table 3. Project Contacts Table Matthew Mitigation Site				
Designer	RES / 3600 Glenwood Ave., Suite 100, Raleigh, NC 27612				
Primary project design POC	Frasier Mullen, PE				
Construction Contractor	KBS Earthwork Inc. / 5616 Coble Church Rd., Julian, NC 27283				
Construction contractor POC	Kory Strader				
Survey Contractor	Matrix East, PLLC / 906 N. Queen St., Suite A, Kinston, NC 28501				
Survey contractor POC	Chris Paderick, PLS				
Planting Contractor	Shenandoah Habitats				
Planting contractor POC	David Coleman				
Monitoring Performers	RES / 3600 Glenwood Ave, Suite 100, Raleigh, NC 27612				
Monitoring POC	Ryan Medric (919) 741-6268				

Table 4. Project Ba	ckground Inforn	nation			
Project Name Matthew					
County		Johnston			
Project Area (acres)			19.19		
Project Coordinates (latitude and longitude)		Latitude: 35.	42503 Longitu	de: -78.40849	
Planted Acreage (Acres of Woody Stems Planted)			16.4		
Project Watershed	Summary Inforn	nation			
Level IV Ecoregion		65m -	- Rolling Coasta	al Plain	
River Basin			Neuse		
USGS Hydrologic Unit 8-digit 03020201	USGS Hydrolo	ogic Unit 14-digit	0	302020115002	0
DWR Sub-basin			03-04-04		
Project Drainage Area (Acres and Square Miles)		1,	460 ac (2.28 sc	ımi)	
Project Drainage Area Percentage of Impervious Area			7%		
Reach Summ	ary Information				
Parameters	RL1-A	RL1-B	RL2		
Length of reach (linear feet)	1767	342	949		
Valley confinement (Confined, moderately confined, unconfined)	Unconfined	Unconfined	Unconfined		
Drainage area (Acres and Square Miles)	853 (1.33)	1460 (2.28)	490 (0.77)		
Perennial, Intermittent, Ephemeral	Perennial	Perennial	Perennial		
NCDWR Water Quality Classification	C; NSW	C; NSW	C; NSW		
Stream Classification (existing)	E5	E4	NA		
Stream Classification (proposed)	E4/E5	E4/E5	E4/E5		
Evolutionary trend (Simon)	III	IV/V	III		
FEMA classification	Zone AE	Zone Ae	Zone AE		
Wetland Sumi	nary Information	1			
Parameters	WA	WB	WC	WD	WE
Size of Wetland (acres)	10.2	0.429	0.100	0.808	0.758
Wetland Type	RR	RR	RR	RR	RR
Mapped Soil Series	Water	Bibb	Bibb	Bibb	Bibb
Drainage Class	NA	PD	PD	PD	PD
Soil Hydric Status	NA	PH	PH	PH	PH
Source of Hydrology	GW, OL	GW, OL	GW, OL	GW, OL	GW, OL
Restoration or enhancement method	H, V	V	V	V	V

Appendix B

Visual Assessment Data

Visual Stream Stability Assessment

ReachRL1-AAssessed Stream Length2438Assessed Bank Length4876

Major (Channel Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Amount of Unstable Footage	% Stable, Performing as Intended	
Bank	Surface Scour/Bare Bank	Bank lacking vegetative cover resulting simply from poor growth and/or surface scour			0	100%	
	Toe Erosion	Bank toe eroding to the extent that bank failure appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	100%	
	Bank Failure	Fluvial and geotechnical - rotational, slumping, calving, or collapse			0	100%	
	Totals						
Structure	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	46	46		100%	
	Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in DMS monitoring guidance document)	36	36		100%	

Visual Stream Stability Assessment

ReachRL2Assessed Stream Length792Assessed Bank Length1584

Major (Channel Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Amount of Unstable Footage	% Stable, Performing as Intended	
Bank	Surface Scour/Bare Bank	Bank lacking vegetative cover resulting simply from poor growth and/or surface scour			0	100%	
	Toe Erosion	Bank toe eroding to the extent that bank failure appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	100%	
	Bank Failure	Fluvial and geotechnical - rotational, slumping, calving, or collapse			0	100%	
	Totals						
Structure	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	19	19		100%	
	Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in DMS monitoring guidance document)	17	17		100%	

Table 6 <u>Vegetation Condition Assessment</u>

Planted Acreage¹ 16.4

	10.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Red Simple Hatch	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Orange Simple Hatch	0	0.00	0.0%
	Total					
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Orange Simple Hatch	0	0.00	0.0%
Cumulative Tot						0.0%

Easement Acreage² 19.19

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Yellow Crosshatch	0	0.00	0.0%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Red Simple Hatch	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of isk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition fo

Matthew MY0 Vegetation Monitoring Plot Photos

Vegetation Plot 1 (3/4/2021)

Vegetation Plot 3 (3/4/2021)

Vegetation Plot 2 (3/4/2021)

Vegetation Plot 4 (3/4/2021)

Vegetation Plot 5 (3/4/2021)

Vegetation Plot 7 (3/4/2021)

Vegetation Plot 6 (3/4/2021)

Vegetation Plot 8 (3/4/2021)

Vegetation Plot 9 (3/4/2021)

Vegetation Plot 10 (3/4/2021)

Matthew MY0 Random Vegetation Monitoring Plot Photo

Random Vegetation Plot 1 (3/4/2021)

Random Vegetation Plot 3 (3/4/2021)

Random Vegetation Plot 2 (3/4/2021)

Random Vegetation Plot 4 (3/4/2021)

Matthew Monitoring Device Photos

Stage Recorder RL1-A

Groundwater Well 1

Stage Recorder RL2

Groundwater Well 2

Groundwater Well 3

Groundwater Well 5

Groundwater Well 4

Groundwater Well 6

Groundwater Well 7

Groundwater Well Ref 1

Groundwater Well 8

Groundwater Well Ref 2

Matthew General Site Photos

RL1-A looking downstream (2/10/2021)

Plunge pool at the top of RL2 (12/15/2020)

RL2 looking upstream (12/15/2020)

Plunge pool and boulder toe protection below NC-96 culvert on RL1-A (12/15/2020)

Appendix C

Vegetation Plot Data

Table 7. Planted Species Summary

Common Name	Scientific Name	Mit Plan %	As-Built %	Total Stems Planted
River Birch	Betula nigra	10	20	3,500
Swamp Chestnut Oak	Quercus michauxii	5	16	2,700
Buttonbush	Cephalanthus occidentalis	10	15	2,500
Sycamore	Platanus occidentalis	10	14	2,300
Willow Oak	Quercus phellos	10	12	2,200
Bald Cypress	Taxodium distichum	15	9	1,500
Water Oak	Quercus nigra	0	8	1,400
Green Ash	Fraxinus pennsylvanica	0	5	800
Swamp Tupelo	Nyssa biflora	10	0	0
Atlantic White Cedar	Chamaecyparis thyoides	10	0	0
Overcup Oak	Quercus lyrata	10	0	0
Laurel Oak	Quercus laurifolia	5	1	100
Water Tupelo	Nyssa aquatica	5	0	0
			Total	17,000
	16.4			
	As-	built Planted	Stems/Acre	1,037

Table 8. Vegetation Plot Mitigation Success Summary

Plot #	Planted Stems/Acre	Volunteer Stems/Acre	Total Stems/Acre	Success Criteria Met?	Averaged Planted Stem Height (ft)
1	1416	0	1416	Yes	1.5
2	850	0	850	Yes	1.4
3	931	0	931	Yes	1.3
4	1174	0	1174	Yes	1.6
5	1174	0	1174	Yes	1.6
6	1214	0	1214	Yes	1.5
7	1093	0	1093	Yes	1.5
8	1133	0	1133	Yes	1.3
9	1012	0	1012	Yes	1.6
10	809	0	809	Yes	1.4
R1	1133	0	1133	Yes	1.5
R2	971	0	971	Yes	1.3
R3	1174	0	1174	Yes	1.4
R4	1255	0	1255	Yes	1.6
Project Avg	1096	0	1096	Yes	1.5

Table 9. Stem Count Total and Planted by Plot Species

	Matthew								Current Plot Data (MY0 2021)																Annual Means								
		Species	001	-01-000	01	001-01-0002		001	001-01-0003		00	1-01-0	004	00	1-01-0005	00	1-01-0	006	003	001-01-0007		001-01-0008		008	001-01-0009			001	-01-00)10	MY	(0 (2021)	
Scientific Name	Common Name	Type	PnoL	P-all 7	Γ	PnoL	P-all	T	PnoL	P-all	T	PnoI	P-all	T	PnoL	P-all T	PnoL	P-all	T	PnoL	P-all	T	PnoI	A P-all	T	PnoL	P-all	T	PnoL	P-all	T	PnoL	P-all T
Betula nigra	river birch	Tree	4	4	4	2	2	2	3	3	3	3 1:	5 15	15	4	4 4	4	. 4	4	6	ϵ	5 6	6	6 6	ϵ	5 10	10	10	9	9	9	81	81 81
Cephalanthus occidentalis	common buttonbush	Shrub	2	2	2	2	2	2																4 4	4	1						13	13 13
Fraxinus pennsylvanica	green ash	Tree	4	4	4	6	6	6					2 2	2	3	3 3	3 4	. 4	4	2	2	2 2	2	8 8	8	3			1	1	1	42	42 42
Platanus occidentalis	American sycamore	Tree	5	5	5							4	4	4	4	4 4	1 5	5	5	9	9) 9)	2 2	2	2 5	5	5 5				49	49 49
Quercus michauxii	swamp chestnut oak	Tree	8	8	8	3	3	3	8	8	8	3	1	1						4	4	4		2 2	2	2 5	5	5 5				49	49 49
Quercus nigra	water oak	Tree	1	1	1	1	1	1	3	3	3	3			3	3 3	3 1	1	1	1	1	. 1				1	1	. 1				13	13 13
Quercus phellos	willow oak	Tree	9	9	9	7	7	7	8	8	8	3	4	4	5	5 5	5 7	7	7	2	2	2 2	2	6 6	6	5 2	2	2 2	10	10	10	89	89 89
Taxodium distichum	bald cypress	Tree	2	2	2				1	1	1	1 3	3	3	10	10 10) 9	9	9	3	3	3				2	2	2 2				43	43 43
		Stem count	35	35	35	21	21	21	23	23	23	3 29	29	29	29	29 29	30	30	30	27	27	27	2	8 28	28	3 25	25	25	20	20	20	379	379 379
		size (ares)		1			1			1			1			1		1			1			1			1		i T	1			14
size (ACRES		size (ACRES)		0.02			0.02			0.02			0.02			0.02		0.02			0.02			0.02			0.02			0.02			0.35
	Species count 8 8		8	6	6	6	5	5	5	5 (6	6	6	6 6	6	6	6	7	7	7		6 6	ϵ	6	6	6	3	3	3	8	8 8		
Stems per ACRE		1416	1416	1416	850	850	850	931	931	931	1174	1174	1174	1174	1174 1174	1214	1214	1214	1093	1093	1093	113	3 1133	1133	1012	1012	1012	809	809	809	1096	1096 1096	

	Current Plot Data (MY0 2021)														eans		
		Species	00)1-01-l	R1	00	1-01-l	R2	00	1-01-l	R3	00	1-01-I	R4	M	Y0 (202	21)
Scientific Name	Common Name	Type	PnoL	P-all	T	PnoL	P-all	T	PnoL	P-all	T	PnoL	P-all	T	PnoL	P-all	T
Betula nigra	river birch	Tree	3	3	3	3	3	3	1	1	1	11	11	11	81	81	81
Cephalanthus occidentalis	common buttonbush	Shrub	2	2	2	1	1	1	2	2	2				13	13	13
Fraxinus pennsylvanica	green ash	Tree	2	2	2	4	4	4	6	6	6				42	42	42
Platanus occidentalis	American sycamore	Tree	7	7	7	2	2	2	2	2	2	4	4	4	49	49	49
Quercus michauxii	swamp chestnut oak	Tree	4	4	4	7	7	7	3	3	3	4	4	4	49	49	49
Quercus nigra	water oak	Tree										2	2	2	13	13	13
Quercus phellos	willow oak	Tree	8	8	8	6	6	6	8	8	8	7	7	7	89	89	89
Taxodium distichum	bald cypress	Tree	2	2	2	1	1	1	7	7	7	3	3	3	43	43	43
		Stem count	28	28	28	24	24	24	29	29	29	31	31	31	379	379	379
	size (ares)									1			1			14	
	size (ACRES						0.02			0.02			0.02			0.35	
		Species count	7	7	7	7	7	7	7	7	7	6	6	6	8	8	8
	Ster	ns per ACRE	1133	1133	1133	971	971	971	1174	1174	1174	1255	1255	1255	1096	1096	1096

Appendix D

Stream Measurement and Geomorphology Data

Table 10. Baseline Stream Data Summary Matthew Mitigation Site - Reach RL1-A																											
Parameter	Gauge ²	Re	gional Cι	ırve		Pr	e-Existin	g Conditi	ion			Refe	erence R	each(es)	Data			Design		Monitoring Baseline							
			_																								
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n		
Bankfull Width (ft)					8.0	8.2	8.2	8.4		2	11.5					1	11.0	12.2	13.3	8.8	10.8	11.0	12.1	1.3	6		
Floodprone Width (ft)					0.0	>15	15.0	>30	-	2	>30					1	>30	>30	>30	>49.8	>49.9	>49.9	>50	0.1	6		
Bankfull Mean Depth (ft)					1.1	1.4	1.4	1.6		2	1.3					1	1.2	1.3	1.3	-	-	-	-	-	-		
¹ Bankfull Max Depth (ft)					1.4	2.2	2.2	2.9		2	1.9					1	1.5	1.6	1.7	1.3	1.7	1.7	2.0	0.3	6		
Bankfull Cross Sectional Area (ft²)					8.5	10.9	10.9	13.2		2	15.2					1	13.1	15.5	17.9	8.6	12.5	12.2	16.6	3.4	6		
Width/Depth Ratio					5.4	6.5	6.5	7.6		2	8.7					1	9.2	9.5	9.8	-	-		-	-	-		
Entrenchment Ratio					2.2	2.2	2.2	2.2	-	2	2.2					1	2.2	2.2	2.2	1.3	1.7	1.7	2.0	0.3	6		
¹ Bank Height Ratio								1.1	-	2	1.1					1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	6		
Profile																											
Riffle Length (ft)											5			35			5.5		23	10	24	23	44	10	45		
Riffle Slope (ft/ft)																				0.01	1.04044	0.73	4.04	0.88273	45		
Pool Length (ft)											3			12			11		18	14	33	32	60	10	44		
Pool Max depth (ft)																											
Pool Spacing (ft)											11			35			39		59.5	26	57	56	91	16	44		
Pattern																											
Channel Beltwidth (ft)											20			59			5.5		23	5.5			23				
Radius of Curvature (ft)											11			26													
Rc:Bankfull width (ft/ft)											0.9			2.1			11		18	11			18				
Meander Wavelength (ft)											155			177													
Meander Width Ratio											13			14.8			39		59.5	39			59.5				
Transport parameters																	_			•							
Reach Shear Stress (competency) lb/f²							-															-					
Max part size (mm) mobilized at bankfull							-																				
Stream Power (transport capacity) W/m ²							-															-					
Additional Reach Parameters																											
Rosgen Classification							F	4b					E4	4/5				E4/5				E	4				
Bankfull Velocity (fps)							-															-					
Bankfull Discharge (cfs)																											
Valley length (ft)								94						42				1013									
Channel Thalweg length (ft)								62						95				1219					19				
Sinuosity (ft)								.25						.18				1.21									
Water Surface Slope (Channel) (ft/ft)																							-				
Channel slope (ft/ft)							0.0	002			0.0027							0.0025				-					
³ Bankfull Floodplain Area (acres)							-																				
⁴% of Reach with Eroding Banks							-																				
Channel Stability or Habitat Metric							-						-														
Biological or Other							-						-														

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

							Tab	le 10. Е	Saseline atthew M	Stream	Data Su	ımmary Reach R	(contin	ued)													
Parameter	Gauge ²	Reg	gional Cι	urve		Pr	e-Existin			iitigatio	one -			each(es)	Data			Design		Monitoring Baseline							
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n		
Bankfull Width (ft)											11.5					1		9.2		8.3	8.8	8.8	9.3	0.5	2		
Floodprone Width (ft)											>30					1		>30		>49.8	>49.9	49.9	>50	0.1	2		
Bankfull Mean Depth (ft)											1.3					1		1.0		-	-	-	-	-	-		
¹ Bankfull Max Depth (ft)											1.9					1		1.3		1.3	1.4	1.4	1.4	0.1	2		
Bankfull Cross Sectional Area (ft ²)											15.2					1		9.0		7.7	8.4	8.4	9.0	0.7	2		
Width/Depth Ratio											8.7					1		9.4		-	-	-	-	-	-		
Entrenchment Ratio											2.2					1		2.2		1.3	1.4	1.4	1.4	0.1	2		
¹ Bank Height Ratio											1.1					1		1.0		1.0	1.0	1.0	1.0	0.0	2		
Profile																											
Riffle Length (ft)											5			35			4		18	9	15	14	37	7	16		
Riffle Slope (ft/ft)																				0.01	1.98875	1.575	5.38	1.68443	16		
Pool Length (ft)											3			12			4		14	17	30	26	82	15	15		
Pool Max depth (ft)																											
Pool Spacing (ft)											11			35			13		45	33	46	40	119	22	14		
Pattern														T	•		1		1	1	 						
Channel Beltwidth (ft)											20			59			15		46	15			46				
Radius of Curvature (ft)											11			26			8		20	8			20				
Rc:Bankfull width (ft/ft)											0.9			2.1			0.9		2.1	0.9			2.1				
Meander Wavelength (ft)											155			177			120		137	120			137				
Meander Width Ratio											13		<u> </u>	14.8			13		14.8	13			14.8				
Transport parameters																				т —							
Reach Shear Stress (competency) lb/f²																											
Max part size (mm) mobilized at bankfull																											
Stream Power (transport capacity) W/m ²																											
Additional Reach Parameters																				•		F.4	/E.c				
Rosgen Classification			T	1										4/5				E4/5					/E5				
Bankfull Velocity (fps)								-																			
Bankfull Discharge (cfs)														10													
Valley length (ft)														42				655									
Channel Thalweg length (ft)														95				792					92				
Sinuosity (ft)					-									.18			.	1.21									
Water Surface Slope (Channel) (ft/ft)					<u> </u>													0.004									
Channel slope (ft/ft)								-			0.0027							0.004									
³ Bankfull Floodplain Area (acres)																											
⁴ % of Reach with Eroding Banks							-																				
Channel Stability or Habitat Metric								-																			
Biological or Other							-																				

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Appendix D. Table 11 - Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) **Project Name/Number: Matthew #100043 Cross Section 1 (Pool) Cross Section 2 (Riffle)** Cross Section 3 (Riffle) **Cross Section 4 (Pool) Cross Section 5 (Pool)** MY2 MY3 MY7 MY+ MY2 MY3 MY5 MY+ MY1 MY2 MY3 MY7 MY+ MY1 MY2 MY7 MY+ MY1 MY2 MY7 MY+ MY1 MY5 Base MY1 MY7 Base MY5 Base MY3 MY5 Base MY3 MY5 Bankfull Elevation (ft) - Based on AB-XSA1 127.1 126.2 125.5 126.0 10.0 8.8 9.8 9.7 Bankfull Width (ft) Floodprone Width (ft) >49.9 >50.0 1.5 1.3 1.6 2.0 2.9 Bankfull Max Depth (ft)² 127.1 126.2 Low Bank Elevation (ft) 9.9 12.1 15.3 Bankfull Cross Sectional Area (ft²)² 8.6 1.3 1.6 Bankfull Entrenchment Ratio Bankfull Bank Height Ratio 1.0 1.0 **Cross Section 6 (Riffle) Cross Section 7 (Riffle) Cross Section 8 (Pool) Cross Section 9 (Riffle) Cross Section 10 (Pool)** MY1 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 MY+ Bankfull Elevation (ft) - Based on AB-XSA¹ 125.4 124.0 123.4 123.5 122.9 11.9 11.2 12.0 13.4 Bankfull Width (ft >49.9 >50 Floodprone Width (ft) >49.9 2.0 2.8 2.0 2.7 Bankfull Max Depth (ft)² 1.4 Low Bank Elevation (ft) 125.4 124.0 123.5 -Bankfull Cross Sectional Area (ft²)² 16.6 19.9 16.5 21.6 2.0 2.0 Bankfull Entrenchment Ratio¹ Bankfull Bank Height Ratio 1.0 1.0 Cross Section 13 (Pool) Cross Section 14 (Riffle) **Cross Section 12 (Riffle) Cross Section 11 (Pool)** Cross Section 15 (Riffle) MY1 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 Base MY1 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 MY+ MY1 MY2 MY3 MY5 MY7 MY+ Base Base Bankfull Elevation (ft) - Based on AB-XSA 122.2 126.4 126.7 125.4 12.1 9.3 8.3 Bankfull Width (ft) >49.8 >49.8 >50 Floodprone Width (ft) 1.7 2.3 1.4 1.3 3.2 Bankfull Max Depth (ft) 122.2 126.7 125.4 Low Bank Elevation (ft) 19.8 14.4 13.9 9.0 7.7 Bankfull Cross Sectional Area (ft²)² Bankfull Entrenchment Ratio 1.7 1.4 1.3 Bankfull Bank Height Ratio 1.0 1.0 1.0 **Cross Section 16 (Pool)** MY1 MY2 MY3 MY5 MY7 MY+ 125.2 Bankfull Elevation (ft) - Based on AB-XSA¹

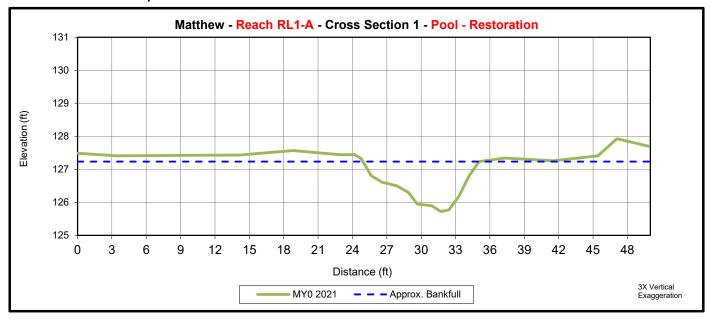
Bankfull Width (ft)¹
Floodprone Width (ft)¹
Bankfull Max Depth (ft)²
Low Bank Elevation (ft)

Bankfull Cross Sectional Area (ft²)²

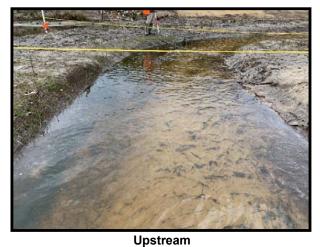
Bankfull Entrenchment Ratio¹

Bankfull Bank Height Ratio¹

12.6


^{1 -} Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation

^{2 -} Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation



Upstream Downstream

			Cros	s Section 1 ((Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	127.2						
Bankfull Width (ft) ¹	10.1						
Floodprone Width (ft) ¹	-						
Bankfull Max Depth (ft) ²	1.5						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	9.0						
Bankfull Entrenchment Ratio ¹	-						
Bankfull Bank Height Ratio ¹	-						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

MY0 2021

····· Low Bank Height

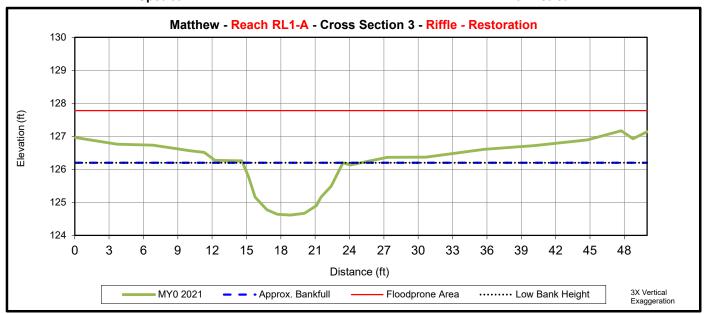
3X Vertical Exaggeration

Matthew - Reach RL1-A - Cross Section 2 - Riffle - Restoration Elevation (ft) Distance (ft)

			Cross	Section 2	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	127.1						
Bankfull Width (ft) ¹	10.0						
Floodprone Width (ft) ¹	>49.9						
Bankfull Max Depth (ft) ²	1.3						
Low Bank Elevation (ft)	127.1						
Bankfull Cross Sectional Area (ft ²) ²	8.6						
Bankfull Entrenchment Ratio 1	1.3						
Bankfull Bank Height Ratio 1	1.0						

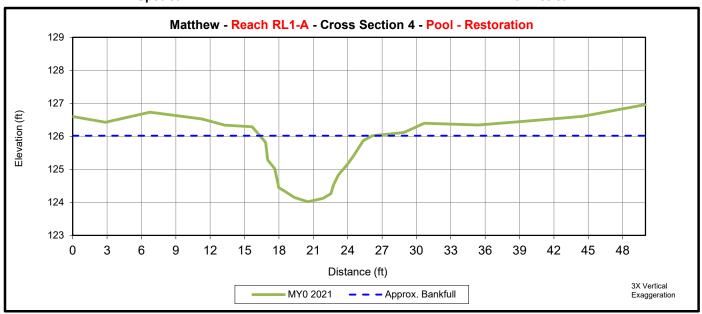
Floodprone Area

1 - Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation


- - Approx. Bankfull

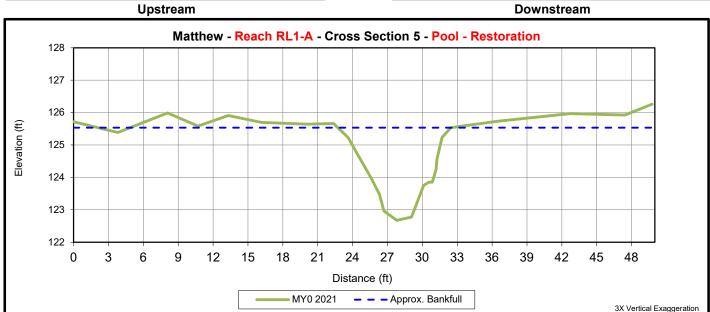
2 - Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream


			Cross	Section 3 (Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.2						
Bankfull Width (ft) ¹	8.8						
Floodprone Width (ft) ¹	>50.0						
Bankfull Max Depth (ft) ²	1.6						
Low Bank Elevation (ft)	126.2						
Bankfull Cross Sectional Area (ft ²) ²	9.9						
Bankfull Entrenchment Ratio 1	1.6				·		
Bankfull Bank Height Ratio 1	1.0						

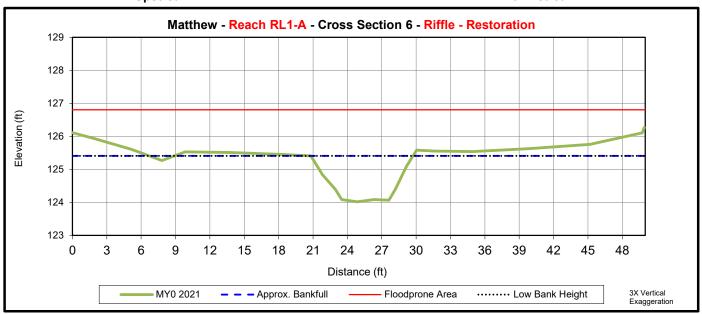
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream



			Cross	Section 4	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.0						
Bankfull Width (ft) ¹	9.8						
Floodprone Width (ft) ¹	1						
Bankfull Max Depth (ft) ²	2.0						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	12.1						
Bankfull Entrenchment Ratio 1	-						
Bankfull Bank Height Ratio 1	-						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation


	Cross Section 5 (Pool)									
	Base	MY1	MY2	MY3	MY5	MY7	MY+			
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.5									
Bankfull Width (ft)	9.7									
Floodprone Width (ft)	-									
Bankfull Max Depth (ft) ²	2.9									
Low Bank Elevation (ft)	•									
Bankfull Cross Sectional Area (ft ²) ²	15.3									
Bankfull Entrenchment Ratio 1	-									
Bankfull Bank Height Ratio 1	-									

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream

			Cross	Section 6 ((Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.4						
Bankfull Width (ft) ¹	8.9						
Floodprone Width (ft) ¹	>49.9						
Bankfull Max Depth (ft) ²	1.4						
Low Bank Elevation (ft)	125.4						
Bankfull Cross Sectional Area (ft ²) ²	8.8						
Bankfull Entrenchment Ratio 1	1.4						
Bankfull Bank Height Ratio 1	1.0						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

MY0 2021

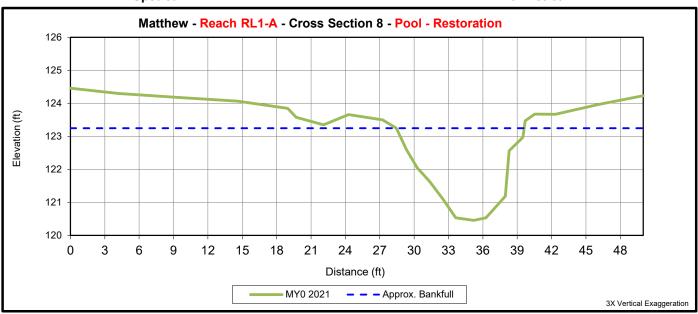
····· Low Bank Elevation

Upstream **Downstream** Matthew - Reach RL1-A - Cross Section 7 - Riffle - Restoration Elevation (ft) Distance (ft) 3X Vertical Exaggeration

			Cross	Section 7 (Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	124.0						
Bankfull Width (ft) ¹	11.9						
Floodprone Width (ft) ¹	>49.9						
Bankfull Max Depth (ft) ²	2.0						
Low Bank Elevation (ft)	124.0						
Bankfull Cross Sectional Area (ft ²) ²	16.6						
Bankfull Entrenchment Ratio 1	2.0						
Bankfull Bank Height Ratio ¹	1.0						

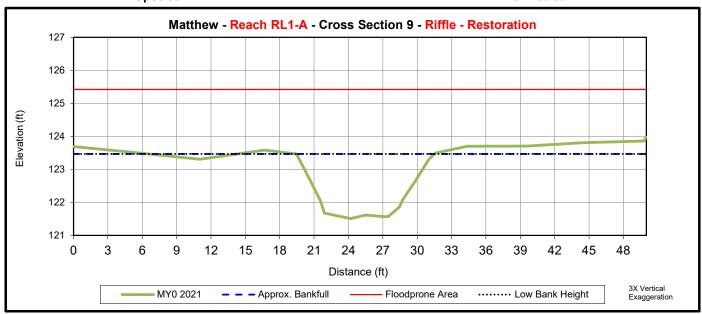
Floodprone Area

1 - Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation


- - Approx. Bankfull

2 - Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream


			Cross	Section 8	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	123.4						
Bankfull Width (ft) ¹	11.2						
Floodprone Width (ft) ¹	-						
Bankfull Max Depth (ft) ²	2.8						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	19.9						
Bankfull Entrenchment Ratio 1	-						
Bankfull Bank Height Ratio ¹	-						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream

			Cross	Section 9	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	123.5						
Bankfull Width (ft) ¹	12.0						
Floodprone Width (ft) ¹	>50						
Bankfull Max Depth (ft) ²	2.0						
Low Bank Elevation (ft)	123.5						
Bankfull Cross Sectional Area (ft ²) ²	16.5						
Bankfull Entrenchment Ratio 1	2.0						
Bankfull Bank Height Ratio ¹	1.0						

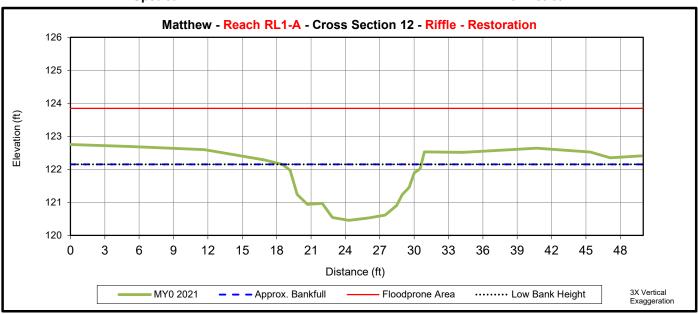
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream **Downstream** Matthew - Reach RL1-A - Cross Section 10 - Pool - Restoration Elevation (ft) Distance (ft) - - Approx. Bankfull MY0 2021 3X Vertical Exaggeration

			Cross	Section 10	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA	122.9						
Bankfull Width (ft)	13.4						
Floodprone Width (ft) ¹	-						
Bankfull Max Depth (ft) ²	2.7						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	21.6						
Bankfull Entrenchment Ratio 1	-						
Bankfull Bank Height Ratio ¹	-						

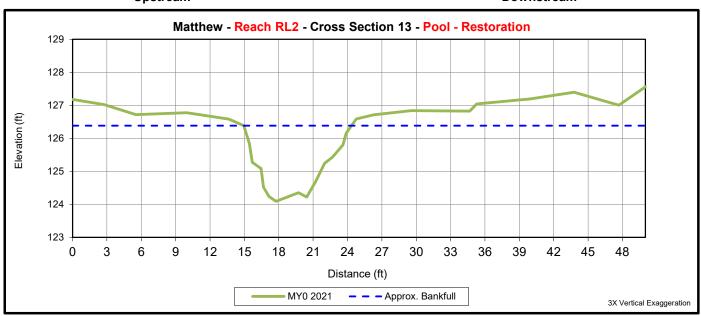
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream Matthew - Reach RL1-A - Cross Section 11 - Pool - Restoration Elevation (ft) Distance (ft) 3X Vertical - - Approx. Bankfull MY0 2021 Exaggeration


	Cross Section 11 (Pool)									
	Base	MY1	MY2	MY3	MY5	MY7	MY+			
Bankfull Elevation (ft) - Based on AB-XSA ¹	122.3									
Bankfull Width (ft) ¹	11.5									
Floodprone Width (ft) ¹	-									
Bankfull Max Depth (ft) ²	3.2									
Low Bank Elevation (ft)	-									
Bankfull Cross Sectional Area (ft ²) ²	19.8									
Bankfull Entrenchment Ratio 1	-									
Bankfull Bank Height Ratio ¹	-					·				

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream


			Cross S	Section 12	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	122.2						
Bankfull Width (ft) ¹	12.1						
Floodprone Width (ft) ¹	>49.8						
Bankfull Max Depth (ft) ²	1.7						
Low Bank Elevation (ft)	122.2						
Bankfull Cross Sectional Area (ft ²) ²	14.4						
Bankfull Entrenchment Ratio 1	1.7						
Bankfull Bank Height Ratio 1	1.0						

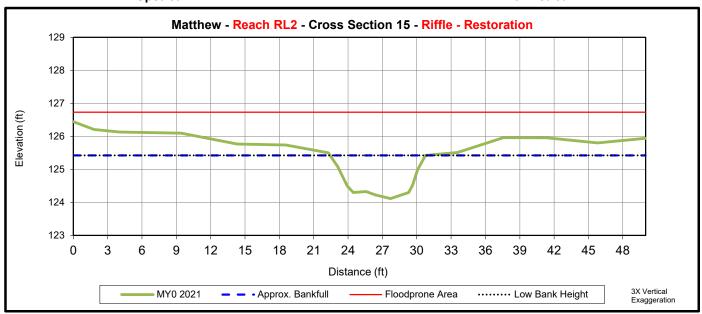
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream

	Cross Section 13 (Pool)						
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.4						
Bankfull Width (ft) ¹	9.4						
Floodprone Width (ft) ¹	-						
Bankfull Max Depth (ft) ²	2.3						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	13.9						
Bankfull Entrenchment Ratio 1	-						
Bankfull Bank Height Ratio 1	-						

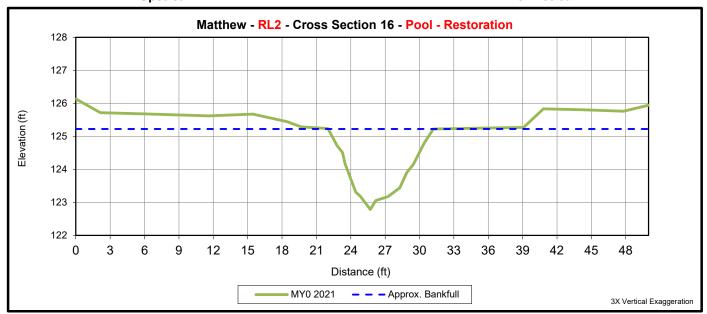
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream **Downstream** Matthew - Reach RL2 - Cross Section 14 - Riffle - Restoration 131 130 129 Elevation (ft) 128 127 126 125 124 21 24 27 18 30 33 39 12 15 36 42 45 48 Distance (ft) MY0 2021 - - Approx. Bankfull - Floodprone Area ····· Low Bank Height 3X Vertical Exaggeration


	Cross Section 14 (Riffle)						
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.7						
Bankfull Width (ft) ¹	9.3						
Floodprone Width (ft) ¹	>49.8						
Bankfull Max Depth (ft) ²	1.4						
Low Bank Elevation (ft)	126.7						
Bankfull Cross Sectional Area (ft²)²	9.0						
Bankfull Entrenchment Ratio 1	1.4						
Bankfull Bank Height Ratio 1	1.0						

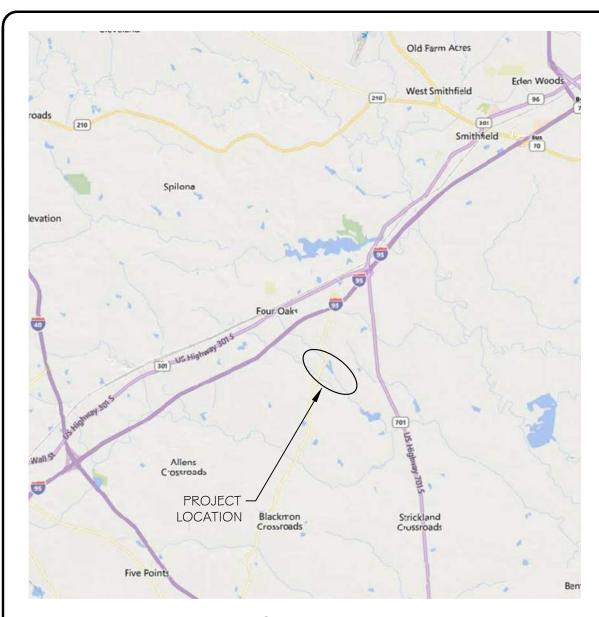
- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream


	Cross Section 15 (Riffle)						
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.4						
Bankfull Width (ft) ¹	8.3						
Floodprone Width (ft) ¹	>50						
Bankfull Max Depth (ft) ²	1.3						
Low Bank Elevation (ft)	125.4						
Bankfull Cross Sectional Area (ft ²) ²	7.7						
Bankfull Entrenchment Ratio 1	1.3						
Bankfull Bank Height Ratio 1	1.0						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Upstream Downstream



	Cross Section 16 (Pool)						
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.2						
Bankfull Width (ft) ¹	9.2						
Floodprone Width (ft) ¹	-						
Bankfull Max Depth (ft) ²	2.4						
Low Bank Elevation (ft)	-						
Bankfull Cross Sectional Area (ft ²) ²	12.6						
Bankfull Entrenchment Ratio 1	-						
Bankfull Bank Height Ratio 1	-						

- 1 Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation
- 2 Uses the current years low top of bank as the basis for adjusting each subsequent years bankfull elevation

Appendix E

Record Drawings

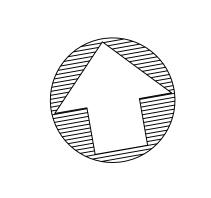
VICINITY MAP

MATTHEW MITIGATION SITE RECORD DRAWINGS

JOHNSTON COUNTY, NORTH CAROLINA

NEUSE RIVER BASIN: HUC 03020201 **JUNE 2021**

RESOURCE ENVIRONMENTAL SOLUTIONS, LLC



Sheet Lie	t Table					
Sheet List Table						
Sheet Number	Sheet Title					
	COVER					
51	REACH RLI					
52	REACH RLI					
53	REACH RLI					
54	REACH RLI					
S 5	REACH RLI					
56	REACH RL2					
57	REACH RL2					
58	WETLANDS					

Engineering Services Provided By Angler Environmental LLC License: F-1428

		ELEASED FOR:
		ELEASE

PROJECT NUMBER: PROJECT NOMBER:
PROJECT MANAGER: KAW
DESIGNED: AFM
DRAWN: TRS
CHECKED: RTM

SHEET NUMBER:

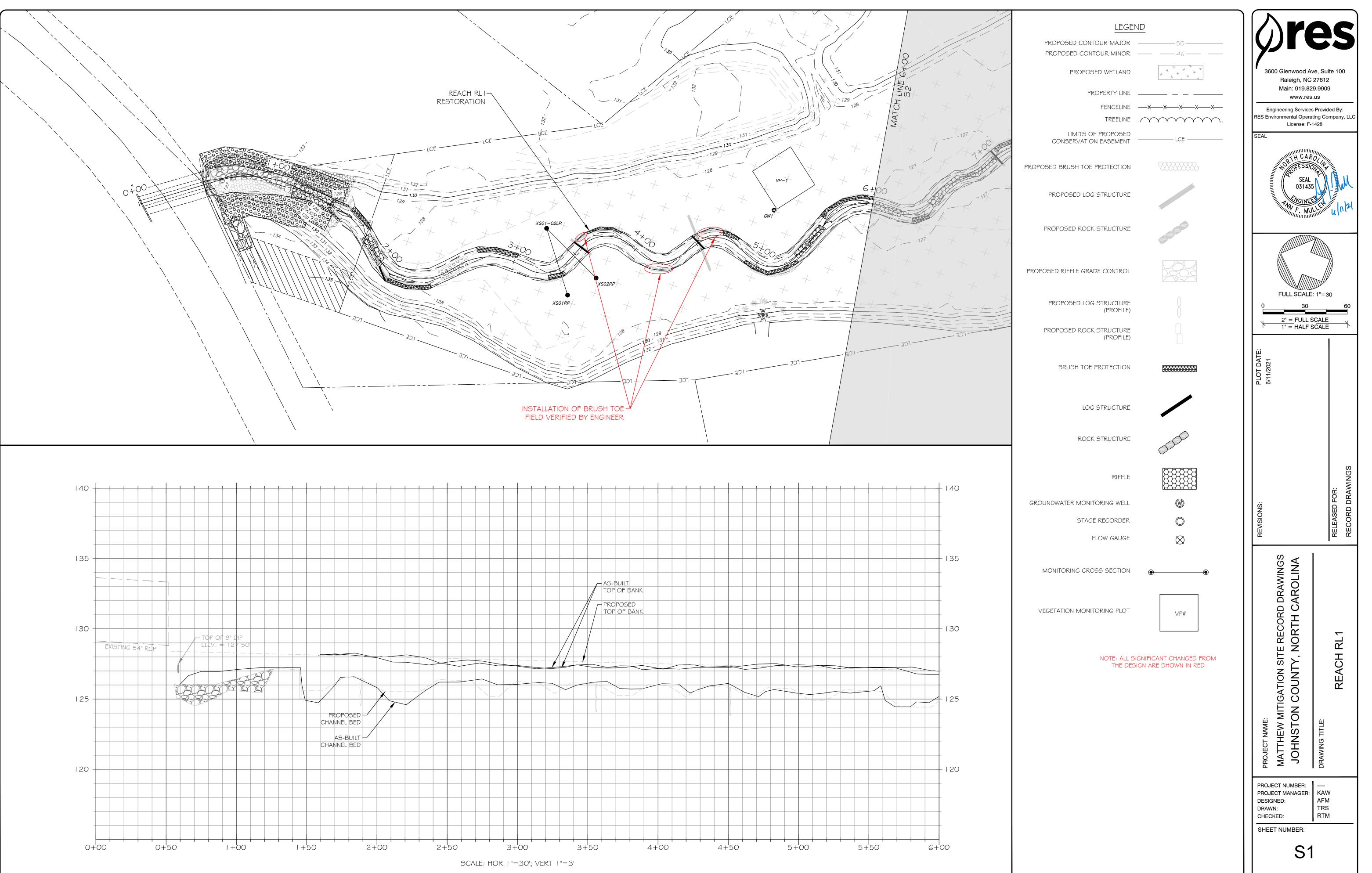
PROJECT DIRECTORY

DESIGNED BY:

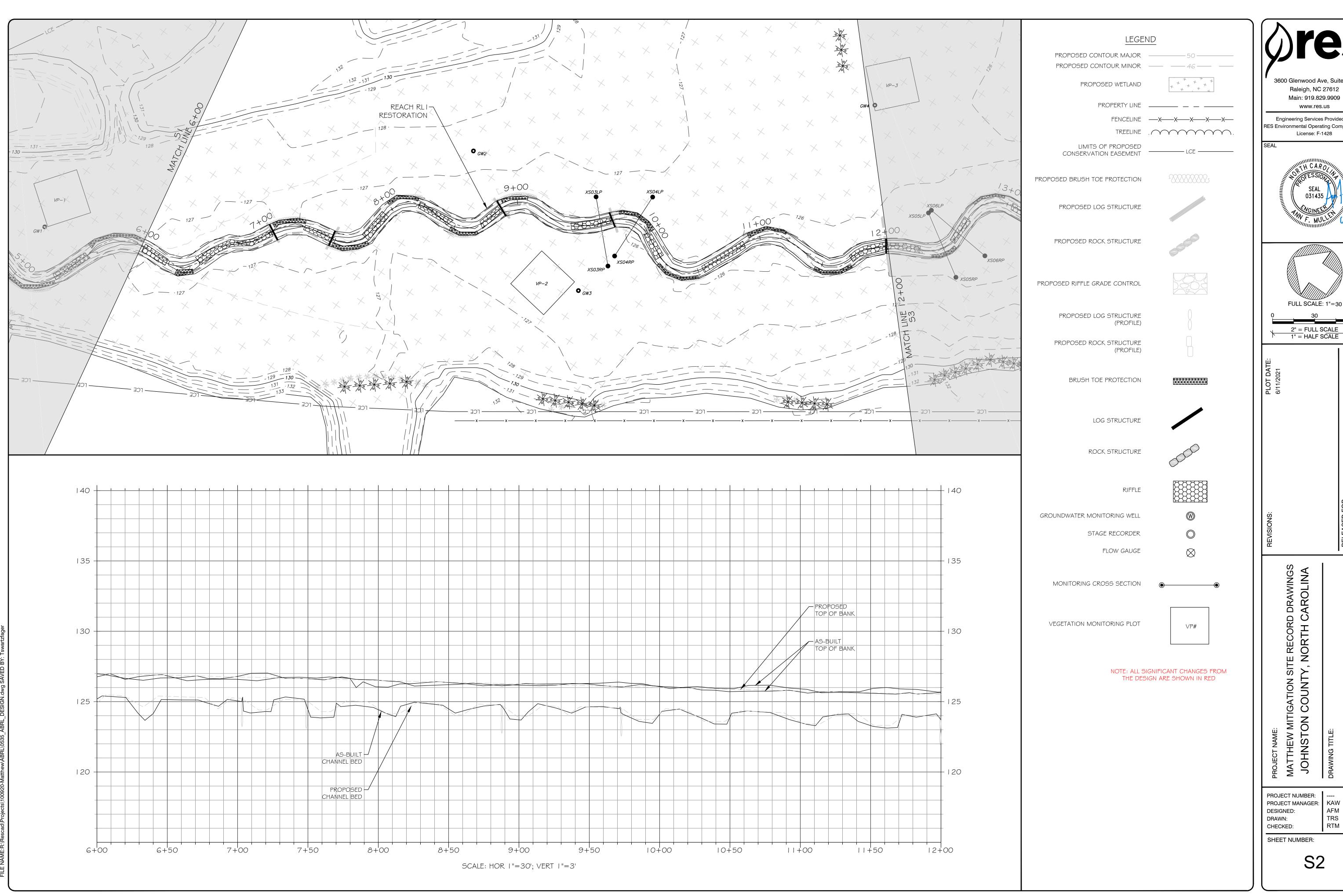
RESOURCE ENVIRONMENTAL SOLUTIONS, LLC 3600 GLENWOOD AVE, SUITE 100 RALEIGH, NC 27612

DESIGNED FOR:

LINDSAY CROCKER NC DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 217 WEST JONES ST., SUITE 300A

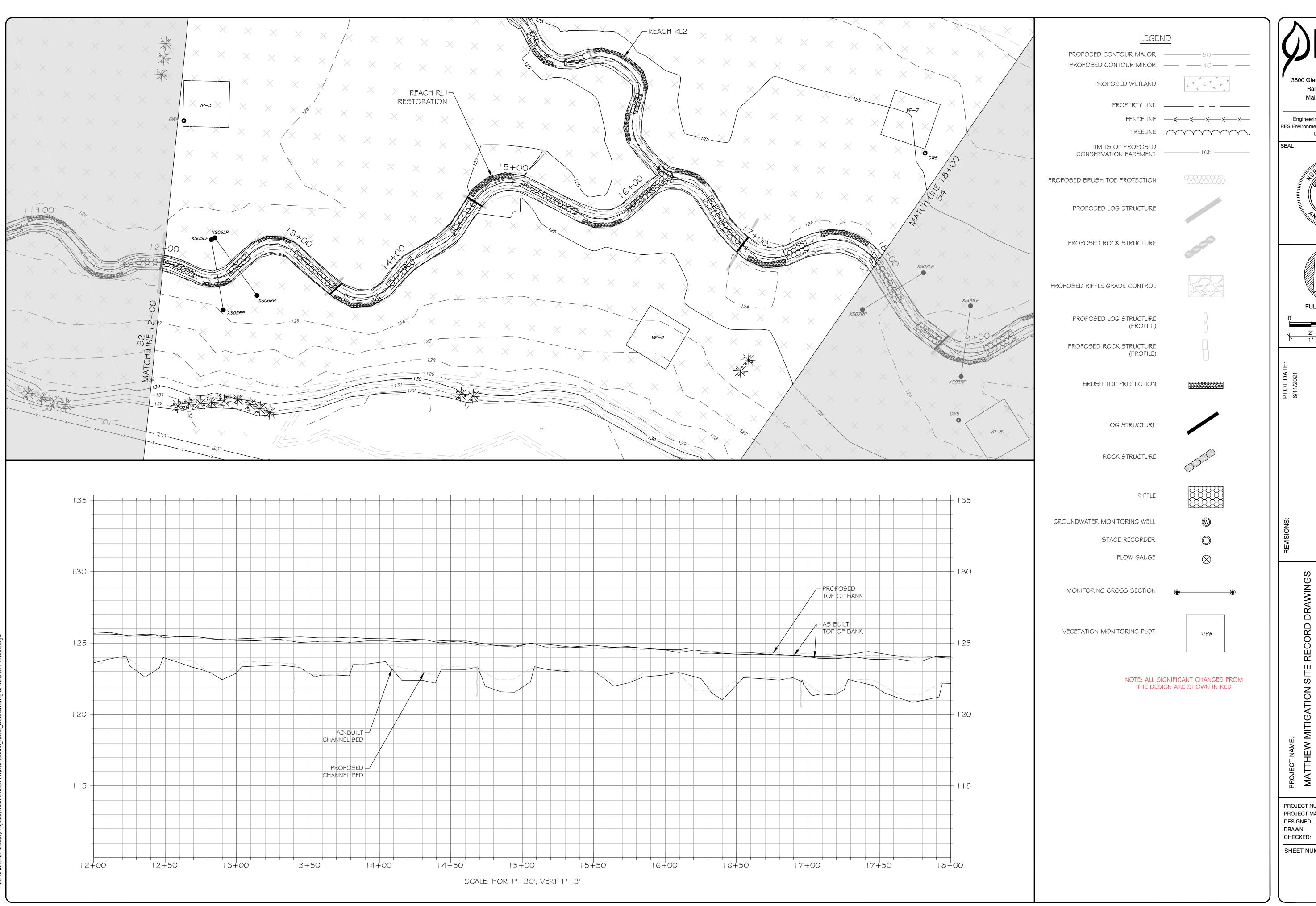

RALEIGH, NC 27603

SURVEYED BY:


MATRIX EAST, PLLC 906 N. QUEEN ST., SUITE A KINSTON, NC 28501

DMS PROJECT #: 100043 CONTRACT #: 7419 USACE ACTION ID #: SAW-2018-01256 RFP #: 16-007279

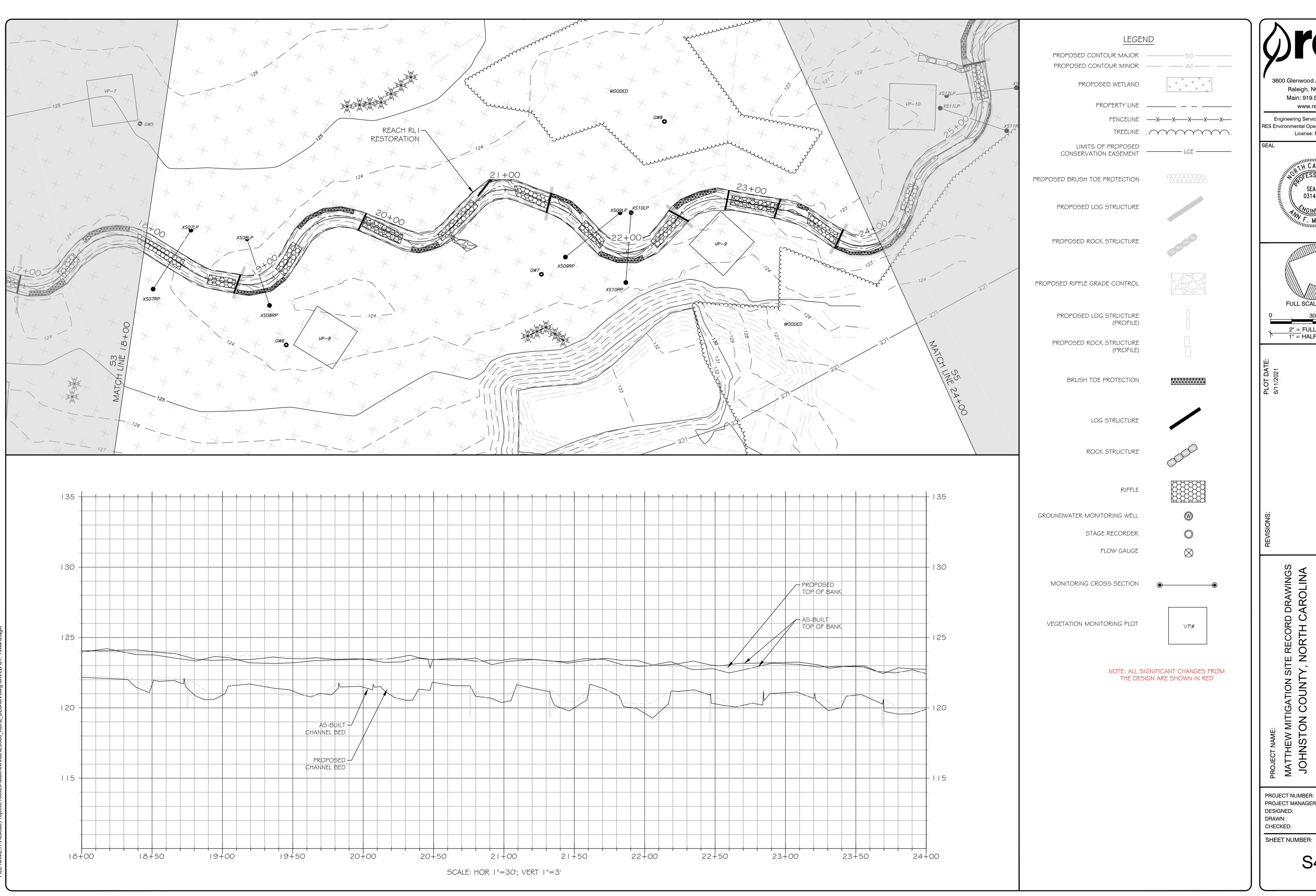
SITE MAP NTS

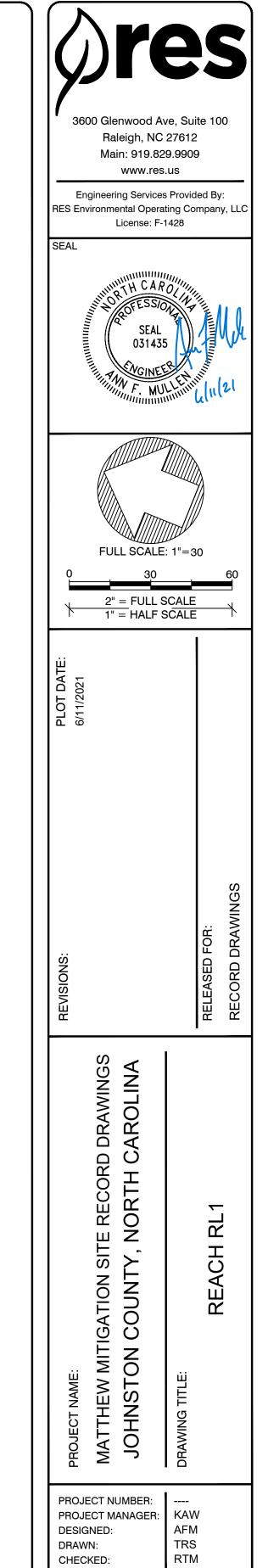

FILE NAME:R:\Rescad\Projects\100920-Matthew\ABRL\0535_ABRL_DESIGN.dwg SAVED BY: Tsv

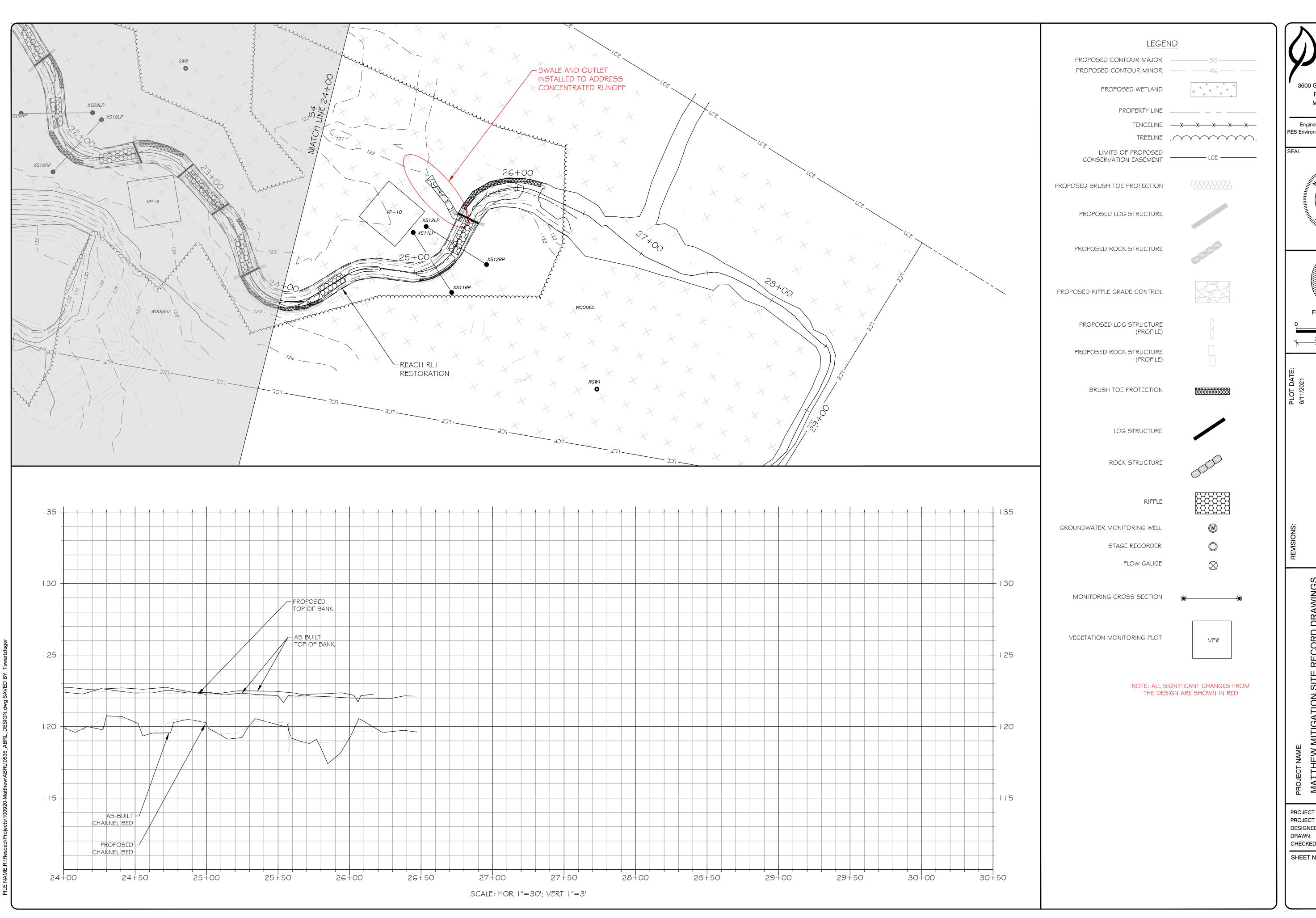
3600 Glenwood Ave, Suite 100 Raleigh, NC 27612 Main: 919.829.9909 www.res.us Engineering Services Provided By: RES Environmental Operating Company, LLC License: F-1428 FULL SCALE: 1"=30 2" = FULL SCALE 1" = HALF SCALE PROJECT NAME:
MATTHEW MITIGATION SITE RECORD DRAWINGS
JOHNSTON COUNTY, NORTH CAROLINA

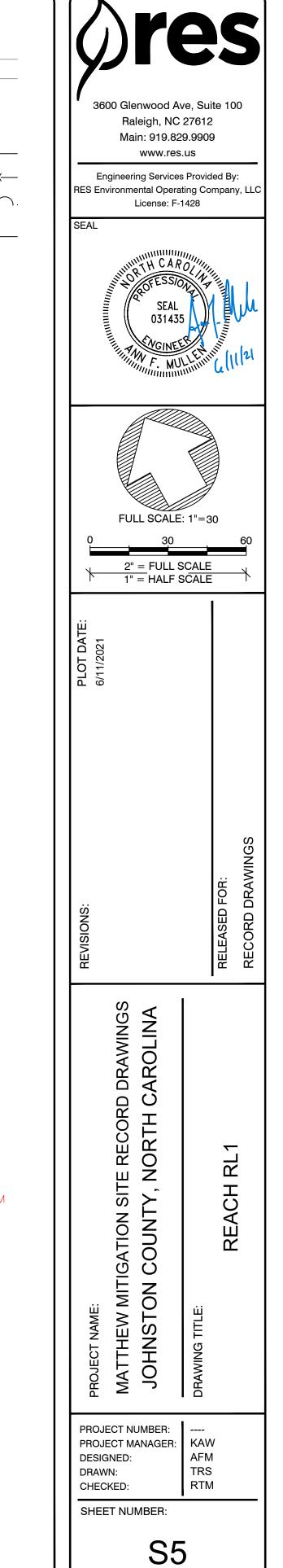
AFM TRS

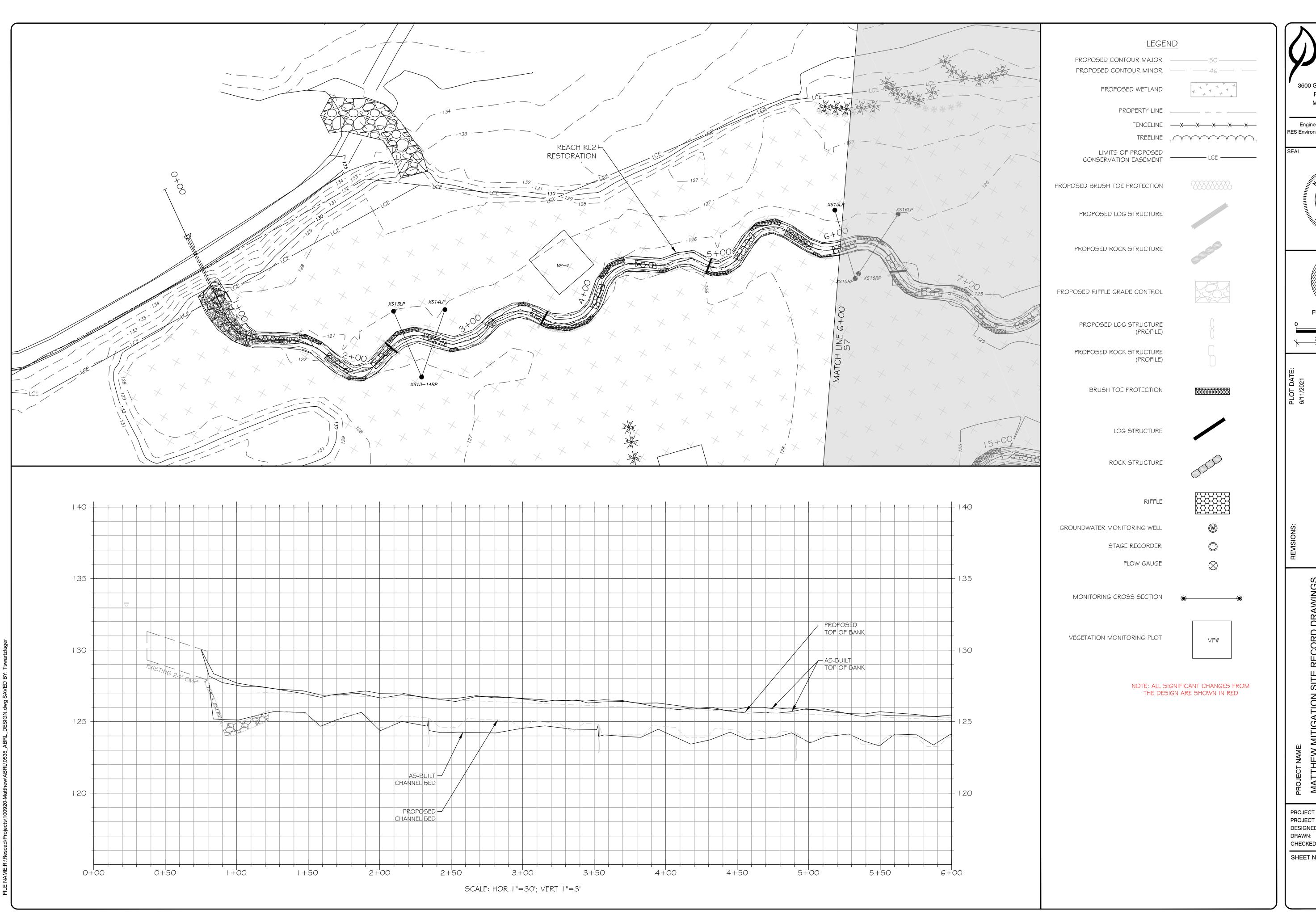
RTM

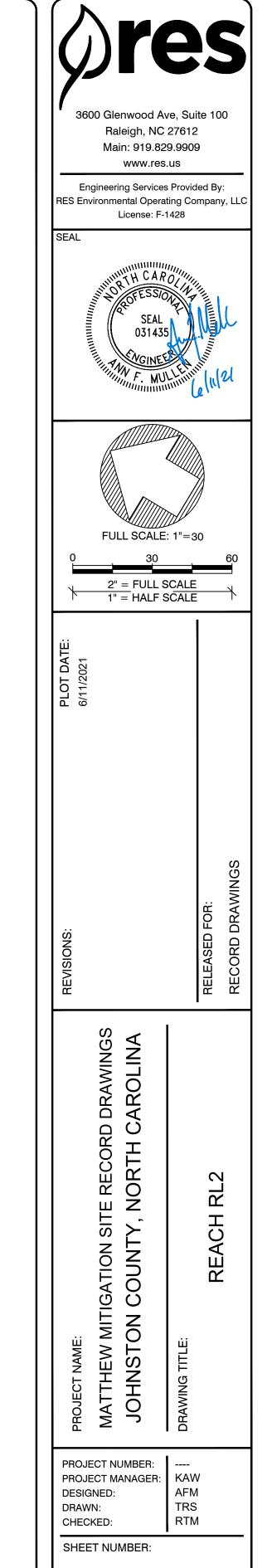


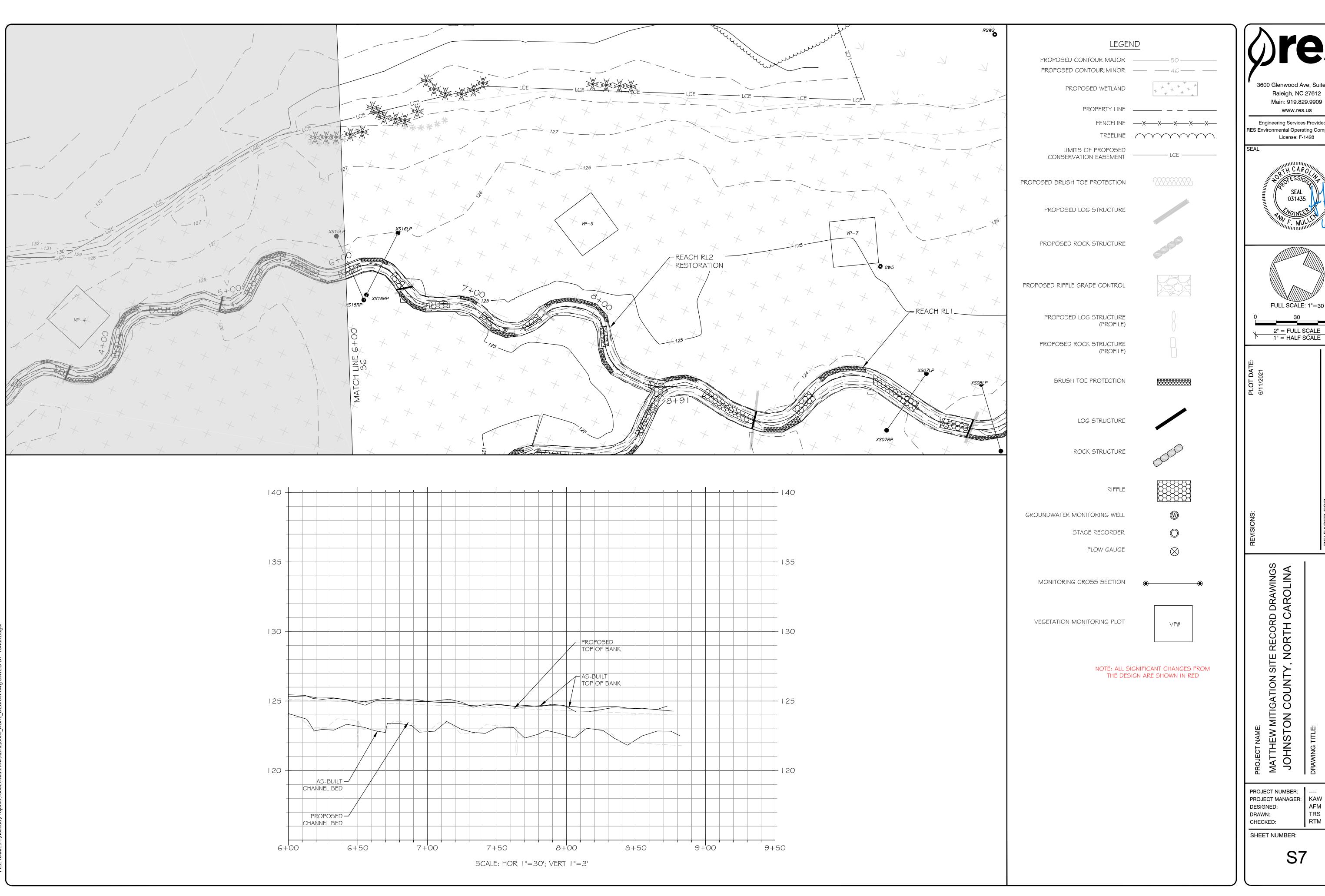

3600 Glenwood Ave, Suite 100 Raleigh, NC 27612 Main: 919.829.9909 www.res.us Engineering Services Provided By: RES Environmental Operating Company, LLC License: F-1428 FULL SCALE: 1"=30 2" = FULL SCALE 1" = HALF SCALE

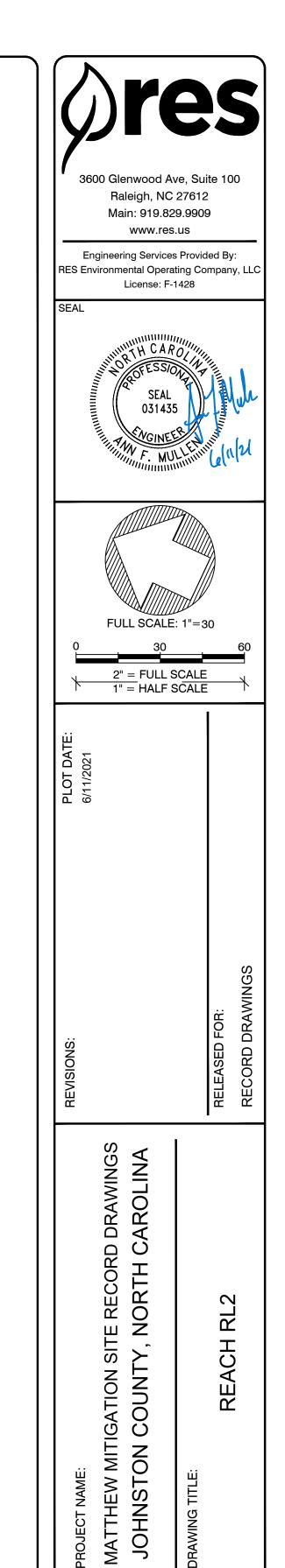

PROJECT NAME:
MATTHEW MITIGATION SITE RECORD DRAWINGS
JOHNSTON COUNTY, NORTH CAROLINA

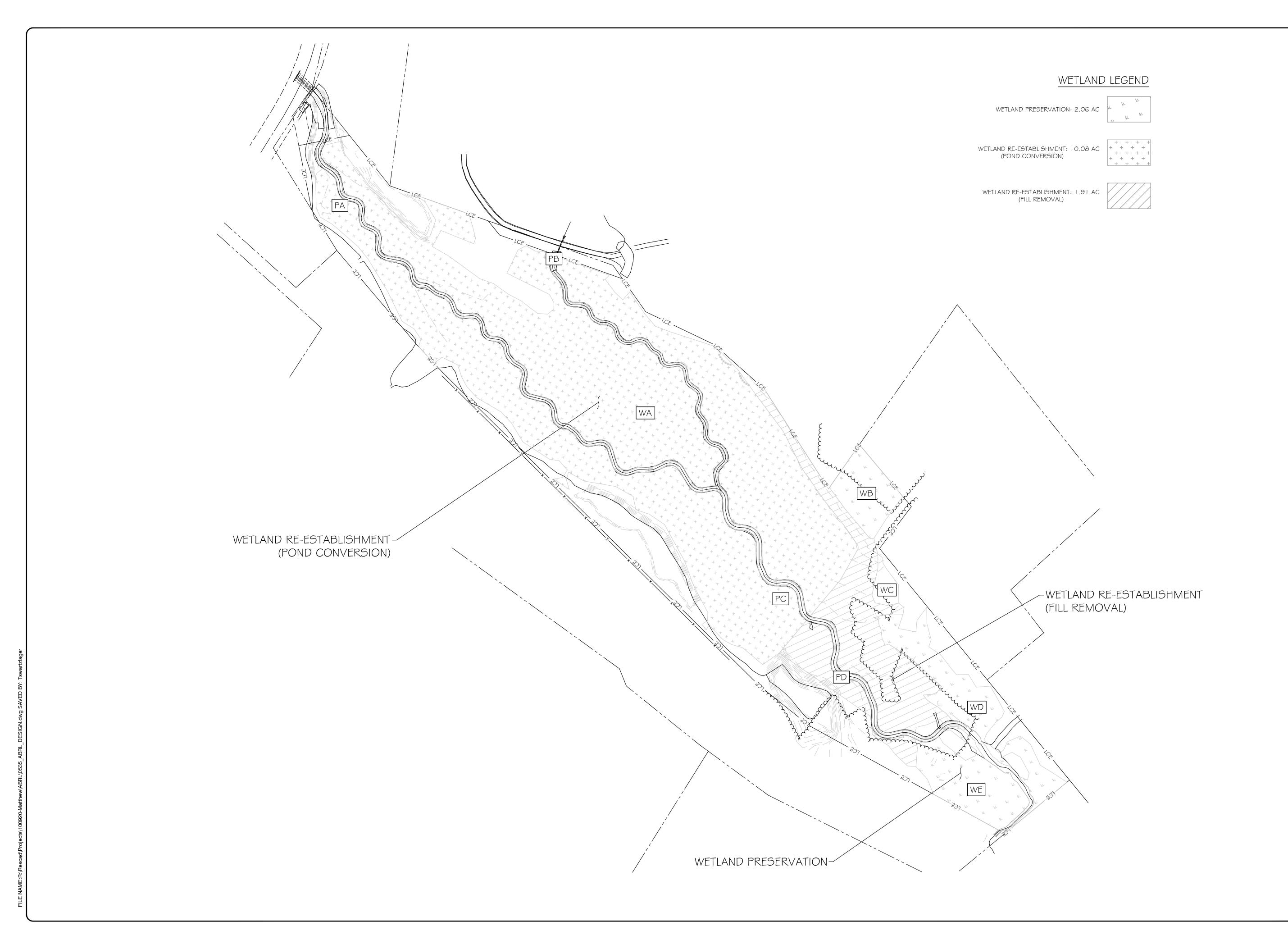

PROJECT NUMBER: PROJECT MANAGER: KAW AFM TRS RTM

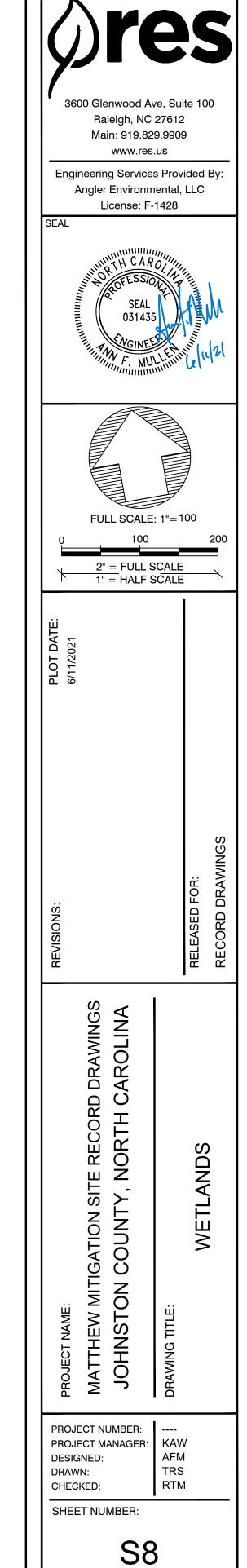

SHEET NUMBER:











AFM TRS

RTM

